Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites.

نویسندگان

  • Sima Aminorroaya Yamini
  • Heng Wang
  • Dianta Ginting
  • David R G Mitchell
  • Shi Xue Dou
  • G Jeffrey Snyder
چکیده

Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)(1-x)(PbSe)x, (PbSe)(1-x)(PbS)x, and (PbS)(1-x)(PbTe)x. The reduction in the lattice thermal conductivity owing to phonon scattering at the defects and interfaces was found to be compensated by reduced carrier mobility. This results in a maximum figure of merit, zT, of ∼1.1 at 800 K similar to the performance of the single phase alloys of PbTe, PbSe, and (PbTe)(1-x)(PbSe)x.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical composition tuning in quaternary p-type Pb-chalcogenides--a promising strategy for enhanced thermoelectric performance.

Recently a significant improvement in the thermoelectric performance of p-type ternary PbTe-PbSe and PbTe-PbS systems has been realized through alternating the electronic band structure and introducing nano-scale precipitates to bulk materials respectively. However, the quaternary system of PbTe-PbSe-PbS has received less attention. In the current work, we have excluded phase complexity by fabr...

متن کامل

Dataset on the electronic and thermal transport properties of quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05

The data presented in this article are related to the research article entitled "High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95-x (PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation" (Ginting et al., 2017) [1]. We measured electrical and thermal transport properties such as temperature-dependent Hall carrier density nH , Hall mobility μH , ther...

متن کامل

Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe.

PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at hi...

متن کامل

Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y).

We present detailed studies of potassium doping in PbTe(1-y)Se(y) (y = 0, 0.15, 0.25, 0.75, 0.85, 0.95, and 1). It was found that Se increases the doping concentration of K in PbTe as a result of the balance of electronegativity and also lowers the lattice thermal conductivity because of the increased number of point defects. Tuning the composition and carrier concentration to increase the dens...

متن کامل

Thermoelectric properties of superlattice nanowires

We report here on a theoretical model for the electronic structure and transport properties of superlattice nanowires, considering their cylindrical wire boundary and multiple anisotropic carrier pockets. The thermoelectric properties of superlattice nanowires made of various lead salts ~PbS, PbSe, and PbTe! are investigated as a function of the segment length, wire diameter, crystal orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 14  شماره 

صفحات  -

تاریخ انتشار 2014